本と物理と戯れる

本の感想、物理、その他という感じで書いていきます。どうぞ、よろしくお願いします。

5/23 フェルミ液体論って面白い

今日はフェルミ液体論の講義があった。電子相関の入り口にあたる内容だと思うが、非常に面白い話だった。

概要を軽くまとめてみよう。もしかしたら間違っているかもしれないが現在の僕の理解をメモしておく。

自由電子近似でうまくいくのはなぜ?

物質の中にたくさんの遍歴電子がある状況を考えてみる。ものすごいたくさんあるということは、

すぐにクーロン反発が起きて散乱してしまうのでは?

と直観的には思う。きっとそれが普通の感覚だ。

 

しかし、電子の平均自由行程はその直観に反して大きい。1K(ケルビン)とかいう低温ではcmオーダーで散乱しないという結果があるみたいだ。それだけ長い距離を移動する間散乱しないということは、相互作用していない

つまり、自由電子とみなしてその運動をうまく記述できるということになりそうだ。

 

なぜそれでうまくいくのか??

 

 

電子間のクーロン反発はどこへ?

さて、クーロン相互作用はどこへいってしまったのか?

結論だけ書くと、相互作用していないわけではなく、相互作用しているけれど、ほかに電子に影響を及ぼす強烈な制約があるのだ!

クーロン相互作用はあるけど、その効果が電子の運動に寄与することができない。といえば良いのだろうか。

 

では、クーロン相互作用の他にどんな影響があるというのか?ここからが今日のメインだ!

 

 

統計的な効果が強すぎる!?

 電子はフェルミ粒子だ。基底状態フェルミ縮退している。それは絶対零度の時に実現されるが、低温ではそれから少し変化して、フェルミ球の外側にある状態を取っている電子も(少し)ある。フェルミ球の内側には電子が詰まっている。フェルミ球の外側の電子が内側の電子と相互作用するという状況を考える。

 

ここで大事な仮定がある。それは、

 

基底状態フェルミ球になること

 

である。

そうでない場合も存在し、モット絶縁体の話に繋がる。今回はそこまでいかない。というかこれから勉強する。

このフェルミ球が存在することという仮定がフェルミ液体論の全ての始まりといっても過言ではない

 

かもしれない。

 

さて、相互作用を考えよう。

簡潔にまとめる。

エネルギー保存則と運動量保存則により非常に厳しい制約が課される。

これが相互作用できない原因と言えるだろう。

 

エネルギー保存則について

散乱後はフェルミ球の外側の状態を取らなければならない。フェルミ球の内側には電子が詰まっているからだ。パウリ禁制から同じ状態を複数の電子が取ることはできない。

 

運動量保存について

運動量保存から、散乱前の二つの電子の重心を中心とした円の円周上に状態がなければならない。しかもフェルミ球の外側だ。これによって散乱後に取りうる状態は非常に限られる。

 

以上から、散乱する確率はエネルギー保存からくる確率と運動量保存からくる確率の積になる。

これが大体、

(低温でフェルミ球の外側に存在する電子のエネルギー)/(フェルミエネルギー)

の二乗であるのだ。

これは非常に小さい。低温であればあるほど小さくなる。従ってほとんど散乱されないという状況が説明できる。

 

以上、今日のまとめ

 

以下、メモ

院試の過去問ゼミ、院試の問題は難しい。復習不足というのもあるが、量も多いなという感じだ。

量子アニーリングの本を勉強し始めた。面白い!斬新な発想というか、物理の勉強してるだけだと出てこないような発想が出てくる。そういうアイデアをみて非常に面白かったと感じた。ただ、まだ2章なもんで、これからもっと面白くなるんだろうなと期待している。

経路積分。こちらも始めたばかりだが、面白そうな雰囲気は感じる。ただし、まだ量子力学の部分的な復習にとどまっている。